44. Number of 1 Bits
15 Jul 2020 | Daily Algorithms
Explain
class Solution {
public:
int hammingWeight(uint32_t n) {
int result = 0;
while(n)
{
n &= (n-1);
result++;
}
return result;
}
};
n & (n - 1) drops the lowest set bit. It’s a neat little bit trick.
Let’s use n = 00101100 as an example. This binary representation has three 1s.
If n = 00101100, then n - 1 = 00101011, so n & (n - 1) = 00101100 & 00101011 = 00101000. Count = 1.
If n = 00101000, then n - 1 = 00100111, so n & (n - 1) = 00101000 & 00100111 = 00100000. Count = 2.
If n = 00100000, then n - 1 = 00011111, so n & (n - 1) = 00100000 & 00011111 = 00000000. Count = 3.
n is now zero, so the while loop ends, and the final count (the numbers of set bits) is returned.
using STL
class Solution {
public:
int hammingWeight(uint32_t n) {
return bitset<32>(n).count();
}
};
Explain
class Solution {
public:
int hammingWeight(uint32_t n) {
int result = 0;
while(n)
{
n &= (n-1);
result++;
}
return result;
}
};
n & (n - 1) drops the lowest set bit. It’s a neat little bit trick.
Let’s use n = 00101100 as an example. This binary representation has three 1s.
If n = 00101100, then n - 1 = 00101011, so n & (n - 1) = 00101100 & 00101011 = 00101000. Count = 1.
If n = 00101000, then n - 1 = 00100111, so n & (n - 1) = 00101000 & 00100111 = 00100000. Count = 2.
If n = 00100000, then n - 1 = 00011111, so n & (n - 1) = 00100000 & 00011111 = 00000000. Count = 3.
n is now zero, so the while loop ends, and the final count (the numbers of set bits) is returned.
using STL
class Solution {
public:
int hammingWeight(uint32_t n) {
return bitset<32>(n).count();
}
};
Comments