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Abstract  

 This project deals with Path Finding Optimization of a mobile robot based on a 
grid map. The main body of the project introduces the Dijkstra, A* and Bi-
Directional A* algorithms. These modifications are focused on computational 
time and path optimality. Individual modifications were evaluated in several 
scenarios, which varied in a static environment. And by doing experiments, Path 
Finding Optimization of multi agents were demonstrated by A* in the project. 

 

1. Introduction 

Path finding is an important area of research, it is an important point between 
artificial intelligence and robotics. In order to complete the task in a mobile and 
secure way, mobile robot path finding is an important indicator of intelligence. 
According to certain evaluation criteria, path planning is a collision-free path that 
mobile robot will find and reach the goal of a state from the initial obstacle 
environment.  

Path finding method is dependent on a state space. State space represents all 
the possible positions and orientations of a robot. There are several ways to 
describe the state space. Usually it is represented by a planning algorithm. The 
most used representation of state space is grid map. The grid map makes it 
easy to update new information about the environment and Dijkstra Algorithm is 
a representative path planning based on a grid map. [1] 

 

- Dijkstra Algorithm  

 
Figure 1. Dijkstra’s Algorithm 

Dijkstra Algorithm is a basic graph searching algorithm that find a single-source 
shortest path in the graph. The configuration space is approximated as a 
discrete cell-grid space, lattices, among others. [2] 

 For a given source node in the graph [Figure .1], the algorithm finds the 
shortest path between that node and every other. It can also be used to find the 
shortest paths from a single node to a single destination node by stopping the 
algorithm once the shortest path to the destination node has been 
determined.[3] 
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(a) 
 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 2. Dijkstra’s Algorithm’s work 

For instance, we would like to find the shortest path between two intersections 
on a map [Figure2]: First, the robot explores the entrance room, in case that’s 
where the target is [Figure .2(a)]. If it’s not there, the robot determines all the 
rooms which are connected to the entrance room, and priorities them by 
distance, shortest first [Figure .2(b)]. Then robot explores the nearest room to 
the entrance for the target [Figure .2(c)]. If it’s not there, robot determines all the 
rooms connected to that room, priorities them by the distance from the entrance 
room, and add it to the priority queue [Figure .2(d)]. The next nearest room to 
entrance room gets explored in turn. This time robot finds an alternative corridor 
to a room already on robot’s priority list. The alternative route is shorter than the 
route already prioritized, then update the priority – meaning the robot will 
explore that room much sooner. If the alternative route was longer, though, the 
robot keeps the original priority [Figure 2(d)]. The robot keeps exploring until the 
target room becomes the highest priority room – via the shortest possible route 
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from the entrance – or until the robot runs out of rooms, determining that there 
is no target to be found. 

 

 

 

 

 

 

 

 

The Dijkstra Algorithm proceeds as follows [11]:  

1) While Q is not empty, pop the node v, that is not already in S, from Q with the 
smallest dist(v). in the first run, source node s will be chosen because dist(s) 
was initialized to 0. In the next run, the next node with the smallest dist value 
is chosen 

2)  Add node v to S, to indicate that v has been visited 

3)  Update dist values of adjacent nodes of the current node v as follows: for 
each new adjacent node u, 

- If dist (v) + weight(u,v) < dist(u), there is a new minimal distance found for u, 
therefore update dist(u) to the new minimal distance value 

- Otherwise, no updates are made to dist(u) 

- Note : the weight of an edge(u,v) is taken from the value associated with 
(u,v) on the graph 

The Algorithm has visited all nodes in the graph and found the smallest distance 
to each node. dist now contains the shortest path tree from source s. 

 

2. Problem Statement 

The Dijkstra algorithm visits all the nodes, finding the minimum path cost from 
the start node to every other node, do wastes a lot of time while processing. 
Many of those nodes may not be on the path with the lowest cost.  

 

3. Optimizing Algorithm 

In this project, we introduce two algorithms: A* and Bi-Directional A* to better 
find an optimized path. 

 

function Dijkstra(Graph, source): 
for each vertex v in Graph:  // Initialization 

dist[v] := infinity   // initial distance from source to vertex v is set to infinite 
previous[v] := undefined  // Previous node in optimal path from source 

       dist[source] := 0   // Distance from source to source 
       Q := the set of all nodes in Graph // all nodes in the graph are unoptimized - thus are in Q 

While Q is not empty   // main loop 
       u := node in Q with smallest dist[ ] 

remove u from Q 
for each neighbor v of u:  // where v has not yet been removed from Q 
        alt := dist[u] + dist_between(u, v) 
        if alt < dist[v]   // Relax (u,v) 
                dist[v] := alt 
                previous[v] := u 

return previous[ ] 
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3.1  A* 

 
Figure 3. A* Algorithm  

 

A* Algorithm is a graph searching algorithm that enables a fast node search 
due to the implementation of heuristics. It is an extension of Dijkstra’s graph 
search algorithm [4]. 

It is formulated in terms of graph weights: starting from a specific starting node 
of a graph, it aims to find a path to the given goal node having the smallest cost. 
It does this by maintaining a tree of paths originating at the start node and 
extending those paths one edge at a time until termination criterion is satisfied 
[Figure 3].  At each iteration of its main loop, A* needs to determine which of its 
paths to extend. It does base on the cost of path and an estimate of the cost 
required to extend the path all the way to the goal. A* selects the path that 
minimizes 

  
 

 

 Where n is the next node on the path, f(n) is the total estimated cost of path 

through node n, g(n) is the cost of the path from the start node to n, and h(n) is a 
heuristic function that estimates the cost of the cheapest path from n to the goal 
[Figure 4]. 

 
Figure 4. The Euclidean Distance Heuristic  

 

 A* terminates when the path it chooses to extend is a path from start to goal or 
if there are no paths eligible to be extended. The heuristic function is problem-
specific. 
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The A* Algorithm proceeds as follows [10]: 

1) At any point during the search, there will be five kinds of states 

- Unvisited: states that have not been visited by yet. Initially, this is every 

state except  

- Dead: stats that have been visited, and for which every possible next state 

has also been visited. A next state of x is a state x’ for which there exists a 

 such that . In sense, there states are dead because 

there is nothing more that they can contribute to the search; there are no 

new leads that could help in finding a path plan. 

- Alive: States that have been encountered, but possibly have unvisited next 

stats. There are considered alive. 

- The open list or simply "open", is the list of all available un-expanded 

nodes. It is usually implemented as a priority queue. 

- The closed list is an optional record of all expanded nodes. It is used to 

prevent repeated search and infinite loops. 

2) The set of alive states is stored in a priority queue, Q 

3) A while loop executed, which terminates only when Q is empty. This will only 

occur when the entire graph has been explored without finding any goal 

states, which result in a FAILURE. 

4) In each while iteration, the highest ranked element, x of Q is removed if x lies 

in , then it reports SUCCESS and terminates; otherwise the algorithm tries 

applying every possible action  

 

Closed list = [] 

 (open list)\ 

  

sort( ) 

 
 

 

 

 

 
      

     

     0 then  
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3.2 Bi-Directional A* 

 
Figure 5. Bi-Directional A* Algorithm 

  
 A* Algorithm is searching from the start to the goal, Bi-Directional A* Algorithm 
can start two searches in parallel – one from the start to the goal, and one from 
the goal to the start. When they meet, it means that they found valid path and it 
stops to search a node. 
The idea behind bidirectional searches is that searching results in a “tree” that 

fans out over the map [Figure 5].  The front-to-front variation links the two 
searches together. Instead of choosing the best forward-search node: 
 

F_forward = g(start, x) + h(x, goal) 

 
or the best backward-search node: 

 
F_Backward = g(y ,goal)  + h(start, y) 

 
this algorithm chooses a pair of nodes with the best g(start ,x) + h(x, y)  + g(y, 

goal). [7] 
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The Bi-Directional A* Algorithm proceeds as follows [11]:  
1) Forward search is used same as A* Algorithm 
2) Backward search also is used by A*, but the process is from Goal(state) to 

Start(state) 
3) The search terminates with success When two search tree (forward search, 

backward search) meet. 
4) Failure occurs if either priority queue has been exhausted. 

 
In this project, we will use the Dijkstra algorithm to implement path finding, and 

we will also implement A* and Bi-Directional A*, as optimizations of Dijkstra 
algorithm in a randomly generated map. Then, we will compare how optimized 
are those three algorithms and we will implement one on a multi-agent 
environment. 

 
4. Result 
 

To test our algorithms, we implemented them. We used Python 3, because 
we were all experienced with it and it is an easy language to do any kind of fast 
prototyping. We implemented the Dijkstra, A* and Bi-Directional A* algorithms. 
There are two versions of A*, one classic and one we called “optimized”. We 
developed the optimized version after testing the first one, which had some 
several performance issues. We believe those issues are due to a bad data 
structure management during runtime of the algorithm. Those optimizations are 
related only to the implementation, not the math of the algorithm. 

Closed list = [] 

  
 

 

 // Forward Search 

sort( ) 

 
 

 

 

 
             

                

                0 then  

 
  // BACKWARD_SEARCH 

    sort( ) 

 
 

 

 

 

 

 
 0 then  
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We did a comparison between the Djikstra and the A* algorithm, and then 
between the A* and Bi-Directional A* algorithm. We do not believe it is relevant 
to compare Djikstra and Bi-Directional A*, since the latter is still very similar to 
A* on a surface level. 

For each algorithm, we generate a set of 1000 random square grid. In a grid, 
we always set the starting point in one corner, and the goal point at the opposite 
corner. The generating algorithm guarantee that we will always find a path and 
a point on the grid is either free, an obstacle, the start or the goal. Lastly, all of 
our path finding algorithms consider the diagonal box as a valid move. We use 
this testing procedure on each grid size, from a 10-side grid to a 100-side grid, 
with increments of five boxes on each side.  

Firstly, for the comparison between Djikstra and A*, we get the following 
results: 

 
The first graph features the number of main loop iterations, while the second 

graph represents the size of the graph built by the algorithms, against the size 
of their environment. The third graph is the running time of each algorithm. The 
first two graph are very similar, and we can deduce from them that A* is at least 
seven to height times more efficient than Djikstra, in term of memory consumed 
and time efficiency. To put things in perspective, we can see from the running 
time graph, that for the same task, the Djikstra algorithm may take 0.1 second, 
while A* may take 0.01 second. From theses results, we can safely deduce that 
A* is definitely more efficient than Djikstra, in a randomly generated 
environment. 

Secondly, we did the same comparison between the A* and Bi-Directional A* 
algorithm. We show the following results: 

Figure 6. Results of our tests of the Djikstra and A* algorithms 
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We can see in the first graph the difference in running time between the two 

algorithms. Already, it is obvious that the Bi-Directional A* does not perform 
better than the A* algorithm. In some cases, it even performs worse, especially 
when the grid size increases. Though, the standard deviation of the results is 
very high so it is quite difficult to draw any real conclusion. However, by looking 
at the second graph, of the number of visited nodes in the grid, we can better 
interpret the algorithm. Indeed, for big grid sizes, especially bigger than a 20 or 
30-side square grid, the Bi-Directional algorithm visits at least more nodes than 
the classic A*. To resume, on the contrary of our theory, our Bi-Directional A* 
algorithm performs worse than A*. 

This result can be explained by looking at our experiment setup. Indeed, 
because the grid generating algorithm puts the starting and the goal points on 
opposite corner, while random obstacles appear between the two, there is a 
certain probability that the two path finding algorithms will go in different 
directions. In other words, for the Bi-Directional A*, the search from the start 
may go first in the top right direction, while the search from the goal may go first 
in the lower left direction. In this case the path might not meet until one has 
found its goal, which would mean a total inefficiency, because one search has 
been useless in order to solve the path finding problem. However, in a line of 
sight situation, which is, without any obstacle between the start and the goal, 
the Bi-Directional A* might perform better, for the reasons said previously. A 
maze situation would probably have analogous results. 
 

Figure 7. Results of our tests of the A* and Bi-Directional A* algorithms 
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5. Application 

  

Figure 8. Multi Agent path Finding by A* (left:map1, right:map2) 

 
 Path Finding Algorithm are used on various robots (Domestic robots, UAVs, 
Industrial robots, Logistic robots) in different environments. In this project, we 
already experienced how to find an optimized path by using Dijkstra, A*, Bi-
Directional A* algorithms and in our result, A* is a better choice for path 
planning and we wonder if A* is also available in a multi-agent path-finding 
system.  
We create two different grid maps and use two robots [Figure 8]. We find out 

that using A* Algorithm is not working in multi-agent system at the same time. 
Therefore, we need to design an A* algorithm for Multi-robot system in different 
environments.  
 

 

Figure 9. Multi Agent path Finding Algorithm by A* (Map1) 

 
 At first, we use A* Algorithm to initialize the path of each robots and check a 
collision between robot1 and robot2 paths. If it found a collision, the algorithm 
checks available move state for robot2. If it has available move state at the 
collision state, it adds an available move state to the path list of robot2 after 
collision state, and recheck for collisions between them. If no collision was 
found, then they can move together at the same time. 
 

  Figure 10. Multi Agent path Finding Algorithm by A* (Map2) 
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 In the second case, we check for a collision on their path planning just as 
before, if it found a collision, the algorithm checks available move state for 
robot2. If no available move state was found for robot2, it means there is no 
way two robots can move at the same time. Therefore, the algorithm makes 
robot2 move first, and when robot2 reached its target position, robot1 starts to 
move to its target position. 
 From the multi-agent environment that we created, A* algorithm is hard to 
implement on path finding optimization. It is vulnerable on dynamic environment 
(multi-agent system) and as Map1 test, when collision and found available state, 
it recalculates A* again, it has high computational cost. Because of those 
problems, multi-robot path finding algorithms has been developed by many 
researchers. Representative algorithms are: Conflict-Based Search (CBS), 
Enhanced Conflict-Based Search (ECBS), Conflict-Based Search with Optimal 
Task Assignment (ECBS-TA), Prioritized planning using SIPP (Safe Interval 
Path Planning) [9] 
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