
2019/2020 Optimization Method Project: Path Finding Optimization

Path Finding Optimization

Final Report

Remy Nicolas Hidra(11934990010)
Claire Emmanuelle Laverne(11934990009)

Changyo lee(118020990052)

 2019/2020 Optimization Method Project: Path Finding Optimization
2

Contents

Section Heading Page
Number

1. Introduction Basic Algorithm: Dijkstra 3

2. Problem Statement Limitation of Dijkstra 5

3. Optimizing
Algorithm

A* 6

Bi-Directional A* 8

4. Results Algorithms Performances 9

5. Application Motion Planning 12

6. Reference 13

 2019/2020 Optimization Method Project: Path Finding Optimization
3

Abstract

 This project deals with Path Finding Optimization of a mobile robot based on a
grid map. The main body of the project introduces the Dijkstra, A* and Bi-
Directional A* algorithms. These modifications are focused on computational
time and path optimality. Individual modifications were evaluated in several
scenarios, which varied in a static environment. And by doing experiments, Path
Finding Optimization of multi agents were demonstrated by A* in the project.

1. Introduction

Path finding is an important area of research, it is an important point between
artificial intelligence and robotics. In order to complete the task in a mobile and
secure way, mobile robot path finding is an important indicator of intelligence.
According to certain evaluation criteria, path planning is a collision-free path that
mobile robot will find and reach the goal of a state from the initial obstacle
environment.

Path finding method is dependent on a state space. State space represents all
the possible positions and orientations of a robot. There are several ways to
describe the state space. Usually it is represented by a planning algorithm. The
most used representation of state space is grid map. The grid map makes it
easy to update new information about the environment and Dijkstra Algorithm is
a representative path planning based on a grid map. [1]

- Dijkstra Algorithm

Figure 1. Dijkstra’s Algorithm

Dijkstra Algorithm is a basic graph searching algorithm that find a single-source
shortest path in the graph. The configuration space is approximated as a
discrete cell-grid space, lattices, among others. [2]

 For a given source node in the graph [Figure .1], the algorithm finds the
shortest path between that node and every other. It can also be used to find the
shortest paths from a single node to a single destination node by stopping the
algorithm once the shortest path to the destination node has been
determined.[3]

 2019/2020 Optimization Method Project: Path Finding Optimization
4

(a)

(b)

(c)

(d)

(e)

Figure 2. Dijkstra’s Algorithm’s work

For instance, we would like to find the shortest path between two intersections
on a map [Figure2]: First, the robot explores the entrance room, in case that’s
where the target is [Figure .2(a)]. If it’s not there, the robot determines all the
rooms which are connected to the entrance room, and priorities them by
distance, shortest first [Figure .2(b)]. Then robot explores the nearest room to
the entrance for the target [Figure .2(c)]. If it’s not there, robot determines all the
rooms connected to that room, priorities them by the distance from the entrance
room, and add it to the priority queue [Figure .2(d)]. The next nearest room to
entrance room gets explored in turn. This time robot finds an alternative corridor
to a room already on robot’s priority list. The alternative route is shorter than the
route already prioritized, then update the priority – meaning the robot will
explore that room much sooner. If the alternative route was longer, though, the
robot keeps the original priority [Figure 2(d)]. The robot keeps exploring until the
target room becomes the highest priority room – via the shortest possible route

 2019/2020 Optimization Method Project: Path Finding Optimization
5

from the entrance – or until the robot runs out of rooms, determining that there
is no target to be found.

The Dijkstra Algorithm proceeds as follows [11]:

1) While Q is not empty, pop the node v, that is not already in S, from Q with the
smallest dist(v). in the first run, source node s will be chosen because dist(s)
was initialized to 0. In the next run, the next node with the smallest dist value
is chosen

2) Add node v to S, to indicate that v has been visited

3) Update dist values of adjacent nodes of the current node v as follows: for
each new adjacent node u,

- If dist (v) + weight(u,v) < dist(u), there is a new minimal distance found for u,
therefore update dist(u) to the new minimal distance value

- Otherwise, no updates are made to dist(u)

- Note : the weight of an edge(u,v) is taken from the value associated with
(u,v) on the graph

The Algorithm has visited all nodes in the graph and found the smallest distance
to each node. dist now contains the shortest path tree from source s.

2. Problem Statement

The Dijkstra algorithm visits all the nodes, finding the minimum path cost from
the start node to every other node, do wastes a lot of time while processing.
Many of those nodes may not be on the path with the lowest cost.

3. Optimizing Algorithm

In this project, we introduce two algorithms: A* and Bi-Directional A* to better
find an optimized path.

function Dijkstra(Graph, source):
for each vertex v in Graph: // Initialization

dist[v] := infinity // initial distance from source to vertex v is set to infinite
previous[v] := undefined // Previous node in optimal path from source

 dist[source] := 0 // Distance from source to source
 Q := the set of all nodes in Graph // all nodes in the graph are unoptimized - thus are in Q

While Q is not empty // main loop
 u := node in Q with smallest dist[]

remove u from Q
for each neighbor v of u: // where v has not yet been removed from Q
 alt := dist[u] + dist_between(u, v)
 if alt < dist[v] // Relax (u,v)
 dist[v] := alt
 previous[v] := u

return previous[]

 2019/2020 Optimization Method Project: Path Finding Optimization
6

3.1 A*

Figure 3. A* Algorithm

A* Algorithm is a graph searching algorithm that enables a fast node search
due to the implementation of heuristics. It is an extension of Dijkstra’s graph
search algorithm [4].

It is formulated in terms of graph weights: starting from a specific starting node
of a graph, it aims to find a path to the given goal node having the smallest cost.
It does this by maintaining a tree of paths originating at the start node and
extending those paths one edge at a time until termination criterion is satisfied
[Figure 3]. At each iteration of its main loop, A* needs to determine which of its
paths to extend. It does base on the cost of path and an estimate of the cost
required to extend the path all the way to the goal. A* selects the path that
minimizes

 Where n is the next node on the path, f(n) is the total estimated cost of path

through node n, g(n) is the cost of the path from the start node to n, and h(n) is a
heuristic function that estimates the cost of the cheapest path from n to the goal
[Figure 4].

Figure 4. The Euclidean Distance Heuristic

 A* terminates when the path it chooses to extend is a path from start to goal or
if there are no paths eligible to be extended. The heuristic function is problem-
specific.

 2019/2020 Optimization Method Project: Path Finding Optimization
7

The A* Algorithm proceeds as follows [10]:

1) At any point during the search, there will be five kinds of states

- Unvisited: states that have not been visited by yet. Initially, this is every

state except

- Dead: stats that have been visited, and for which every possible next state

has also been visited. A next state of x is a state x’ for which there exists a

 such that . In sense, there states are dead because

there is nothing more that they can contribute to the search; there are no

new leads that could help in finding a path plan.

- Alive: States that have been encountered, but possibly have unvisited next

stats. There are considered alive.

- The open list or simply "open", is the list of all available un-expanded

nodes. It is usually implemented as a priority queue.

- The closed list is an optional record of all expanded nodes. It is used to

prevent repeated search and infinite loops.

2) The set of alive states is stored in a priority queue, Q

3) A while loop executed, which terminates only when Q is empty. This will only

occur when the entire graph has been explored without finding any goal

states, which result in a FAILURE.

4) In each while iteration, the highest ranked element, x of Q is removed if x lies

in , then it reports SUCCESS and terminates; otherwise the algorithm tries

applying every possible action

Closed list = []

 (open list)\

sort()

 0 then

 2019/2020 Optimization Method Project: Path Finding Optimization
8

3.2 Bi-Directional A*

Figure 5. Bi-Directional A* Algorithm

 A* Algorithm is searching from the start to the goal, Bi-Directional A* Algorithm
can start two searches in parallel – one from the start to the goal, and one from
the goal to the start. When they meet, it means that they found valid path and it
stops to search a node.
The idea behind bidirectional searches is that searching results in a “tree” that

fans out over the map [Figure 5]. The front-to-front variation links the two
searches together. Instead of choosing the best forward-search node:

F_forward = g(start, x) + h(x, goal)

or the best backward-search node:

F_Backward = g(y ,goal) + h(start, y)

this algorithm chooses a pair of nodes with the best g(start ,x) + h(x, y) + g(y,

goal). [7]

 2019/2020 Optimization Method Project: Path Finding Optimization
9

The Bi-Directional A* Algorithm proceeds as follows [11]:
1) Forward search is used same as A* Algorithm
2) Backward search also is used by A*, but the process is from Goal(state) to

Start(state)
3) The search terminates with success When two search tree (forward search,

backward search) meet.
4) Failure occurs if either priority queue has been exhausted.

In this project, we will use the Dijkstra algorithm to implement path finding, and

we will also implement A* and Bi-Directional A*, as optimizations of Dijkstra
algorithm in a randomly generated map. Then, we will compare how optimized
are those three algorithms and we will implement one on a multi-agent
environment.

4. Result

To test our algorithms, we implemented them. We used Python 3, because
we were all experienced with it and it is an easy language to do any kind of fast
prototyping. We implemented the Dijkstra, A* and Bi-Directional A* algorithms.
There are two versions of A*, one classic and one we called “optimized”. We
developed the optimized version after testing the first one, which had some
several performance issues. We believe those issues are due to a bad data
structure management during runtime of the algorithm. Those optimizations are
related only to the implementation, not the math of the algorithm.

Closed list = []

 // Forward Search

sort()

 0 then

 // BACKWARD_SEARCH

 sort()

 0 then

 2019/2020 Optimization Method Project: Path Finding Optimization
10

We did a comparison between the Djikstra and the A* algorithm, and then
between the A* and Bi-Directional A* algorithm. We do not believe it is relevant
to compare Djikstra and Bi-Directional A*, since the latter is still very similar to
A* on a surface level.

For each algorithm, we generate a set of 1000 random square grid. In a grid,
we always set the starting point in one corner, and the goal point at the opposite
corner. The generating algorithm guarantee that we will always find a path and
a point on the grid is either free, an obstacle, the start or the goal. Lastly, all of
our path finding algorithms consider the diagonal box as a valid move. We use
this testing procedure on each grid size, from a 10-side grid to a 100-side grid,
with increments of five boxes on each side.

Firstly, for the comparison between Djikstra and A*, we get the following
results:

The first graph features the number of main loop iterations, while the second

graph represents the size of the graph built by the algorithms, against the size
of their environment. The third graph is the running time of each algorithm. The
first two graph are very similar, and we can deduce from them that A* is at least
seven to height times more efficient than Djikstra, in term of memory consumed
and time efficiency. To put things in perspective, we can see from the running
time graph, that for the same task, the Djikstra algorithm may take 0.1 second,
while A* may take 0.01 second. From theses results, we can safely deduce that
A* is definitely more efficient than Djikstra, in a randomly generated
environment.

Secondly, we did the same comparison between the A* and Bi-Directional A*
algorithm. We show the following results:

Figure 6. Results of our tests of the Djikstra and A* algorithms

 2019/2020 Optimization Method Project: Path Finding Optimization
11

We can see in the first graph the difference in running time between the two

algorithms. Already, it is obvious that the Bi-Directional A* does not perform
better than the A* algorithm. In some cases, it even performs worse, especially
when the grid size increases. Though, the standard deviation of the results is
very high so it is quite difficult to draw any real conclusion. However, by looking
at the second graph, of the number of visited nodes in the grid, we can better
interpret the algorithm. Indeed, for big grid sizes, especially bigger than a 20 or
30-side square grid, the Bi-Directional algorithm visits at least more nodes than
the classic A*. To resume, on the contrary of our theory, our Bi-Directional A*
algorithm performs worse than A*.

This result can be explained by looking at our experiment setup. Indeed,
because the grid generating algorithm puts the starting and the goal points on
opposite corner, while random obstacles appear between the two, there is a
certain probability that the two path finding algorithms will go in different
directions. In other words, for the Bi-Directional A*, the search from the start
may go first in the top right direction, while the search from the goal may go first
in the lower left direction. In this case the path might not meet until one has
found its goal, which would mean a total inefficiency, because one search has
been useless in order to solve the path finding problem. However, in a line of
sight situation, which is, without any obstacle between the start and the goal,
the Bi-Directional A* might perform better, for the reasons said previously. A
maze situation would probably have analogous results.

Figure 7. Results of our tests of the A* and Bi-Directional A* algorithms

 2019/2020 Optimization Method Project: Path Finding Optimization
12

5. Application

Figure 8. Multi Agent path Finding by A* (left:map1, right:map2)

 Path Finding Algorithm are used on various robots (Domestic robots, UAVs,
Industrial robots, Logistic robots) in different environments. In this project, we
already experienced how to find an optimized path by using Dijkstra, A*, Bi-
Directional A* algorithms and in our result, A* is a better choice for path
planning and we wonder if A* is also available in a multi-agent path-finding
system.
We create two different grid maps and use two robots [Figure 8]. We find out

that using A* Algorithm is not working in multi-agent system at the same time.
Therefore, we need to design an A* algorithm for Multi-robot system in different
environments.

Figure 9. Multi Agent path Finding Algorithm by A* (Map1)

 At first, we use A* Algorithm to initialize the path of each robots and check a
collision between robot1 and robot2 paths. If it found a collision, the algorithm
checks available move state for robot2. If it has available move state at the
collision state, it adds an available move state to the path list of robot2 after
collision state, and recheck for collisions between them. If no collision was
found, then they can move together at the same time.

 Figure 10. Multi Agent path Finding Algorithm by A* (Map2)

 2019/2020 Optimization Method Project: Path Finding Optimization
13

 In the second case, we check for a collision on their path planning just as
before, if it found a collision, the algorithm checks available move state for
robot2. If no available move state was found for robot2, it means there is no
way two robots can move at the same time. Therefore, the algorithm makes
robot2 move first, and when robot2 reached its target position, robot1 starts to
move to its target position.
 From the multi-agent environment that we created, A* algorithm is hard to
implement on path finding optimization. It is vulnerable on dynamic environment
(multi-agent system) and as Map1 test, when collision and found available state,
it recalculates A* again, it has high computational cost. Because of those
problems, multi-robot path finding algorithms has been developed by many
researchers. Representative algorithms are: Conflict-Based Search (CBS),
Enhanced Conflict-Based Search (ECBS), Conflict-Based Search with Optimal
Task Assignment (ECBS-TA), Prioritized planning using SIPP (Safe Interval
Path Planning) [9]

6. Reference

1. David González, Joshué Pérez, Vicente Milanés, and F. N. (n.d.). A

Review of Motion Planning Techniques for Automated Vehicles.

2. Wang, H., Yu, Y., & Yuan, Q. (2011). Application of Dijkstra

algorithm in robot path-planning. 2011 2nd International Conference
on Mechanic Automation and Control Engineering, MACE 2011 -
Proceedings, (2010011004), 1067–1069.

3. https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

4. Duchon, F., Babinec, A., Kajan, M., Beno, P., Florek, M., Fico, T.,

& Jurišica, L. (2014). Path planning with modified A star algorithm

for a mobile robot. Procedia Engineering, 96, 59–69.

5. https://en.wikipedia.org/wiki/A*_search_algorithm

6. Pijls, W. (2008). A new bidirectional algorithm for shortest paths.

Intelligence
7. Chen, J., Holte, R. C., Zilles, S., & Sturtevant, N. R. (2017).

Front-to-end bidirectional heuristic search with Near-Optimal node

expansions. IJCAI International Joint Conference on Artificial
8. Post, H., & Pijls, W. (2009). Yet another bidirectional algorithm

for shortest paths. Econometric Institute Report EI 2009-10, 1–9.

9. Roman Bartak, Philipp Obermeier, Torsten Schaub, Tran Cao Son, Roni

Stern.Multi-Agent Pathfinding: Models, Solvers, and Systems
10. http://planning.cs.uiuc.edu/node40.html#fig:gfs
11. http://planning.cs.uiuc.edu/node50.html

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
https://en.wikipedia.org/wiki/A*_search_algorithm
http://planning.cs.uiuc.edu/node40.html#fig:gfs
http://planning.cs.uiuc.edu/node50.html

